Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus.

نویسندگان

  • Stephen M Secor
  • Scott E White
چکیده

Individually, the metabolic demands of digestion or movement can be fully supported by elevations in cardiovascular performance, but when occurring simultaneously, vascular perfusion may have to be prioritized to either the gut or skeletal muscles. Burmese pythons (Python molurus) experience similar increases in metabolic rate during the digestion of a meal as they do while crawling, hence each would have an equal demand for vascular supply when these two actions are combined. To determine, for the Burmese python, whether blood flow is prioritized when snakes are digesting and moving, we examined changes in cardiac performance and blood flow in response to digestion, movement, and the combination of digestion and movement. We used perivascular blood flow probes to measure blood flow through the left carotid artery, dorsal aorta, superior mesenteric artery and hepatic portal vein, and to calculate cardiac output, heart rate and stroke volume. Fasted pythons while crawling experienced a 2.7- and 3.3-fold increase, respectively, in heart rate and cardiac output, and a 66% decrease in superior mesenteric flow. During the digestion of a rodent meal equaling in mass to 24.7% of the snake's body mass, heart rate and cardiac output increased by 3.3- and 4.4-fold, respectively. Digestion also resulted in respective 11.6- and 14.1-fold increases in superior mesenteric and hepatic portal flow. When crawling while digesting, cardiac output and dorsal aorta flow increased by only 21% and 9%, respectively, a modest increase compared with that when they start to crawl on an empty stomach. Crawling did triggered a significant reduction in blood flow to the digesting gut, decreasing superior mesenteric and hepatic portal flow by 81% and 47%, respectively. When faced with the dual demands of digestion and crawling, Burmese pythons prioritize blood flow, apparently diverting visceral supply to the axial muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion.

To investigate the potential limiting steps of peak metabolic rates, we examined gas exchange rates ( vdot (O2), vdot (CO2)), respiratory exchange ratio (RER), breathing frequency, tidal volume, minute ventilation volume (V.e) as well as the heart rate, systemic blood flow and stroke volume of Burmese pythons (Python molurus) while fasting at rest, exercising, digesting and exercising while dig...

متن کامل

Increased blood oxygen affinity during digestion in the snake Python molurus.

Many snakes exhibit large increases in metabolic rate during digestion that place extensive demands on efficient oxygen transport. In the present study, we describe blood oxygen affinity following three weeks of fasting and 48 h after feeding in the Burmese python (Python molurus). We also report simultaneous measurements of arterial blood gases and haematological parameters. Arterial blood was...

متن کامل

Intracardiac flow separation in an in situ perfused heart from Burmese python Python molurus.

The heart of non-crocodilian reptiles has two separate atria that receive blood from the systemic and pulmonary circulations. The ventricle is not fully divided, but is compartmentalised into two chambers (cavum dorsale and cavum pulmonale) by a muscular ridge that runs from the apex to the base of the ventricle. The muscular ridge is small in turtles, but is well developed in varanid lizards a...

متن کامل

Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as ...

متن کامل

Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus.

The large intact prey ingested by Burmese pythons require considerable processing by the stomach before passage into the small intestine. To investigate the function and cost of gastric digestion and its contribution to postprandial metabolic response for the Burmese python, I examined the rate of gastric digestion, the postprandial profile of gastric pH and the effects of decreasing gastric wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 1  شماره 

صفحات  -

تاریخ انتشار 2010